3.171 \(\int \frac {(d-c^2 d x^2)^2 (a+b \sin ^{-1}(c x))^2}{x^2} \, dx\)

Optimal. Leaf size=249 \[ -\frac {4}{3} c^2 d^2 x \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2-\frac {2}{9} b c d^2 \left (1-c^2 x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )-\frac {10}{3} b c d^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )-\frac {d^2 \left (1-c^2 x^2\right )^2 \left (a+b \sin ^{-1}(c x)\right )^2}{x}-\frac {8}{3} c^2 d^2 x \left (a+b \sin ^{-1}(c x)\right )^2-4 b c d^2 \tanh ^{-1}\left (e^{i \sin ^{-1}(c x)}\right ) \left (a+b \sin ^{-1}(c x)\right )-\frac {2}{27} b^2 c^4 d^2 x^3+\frac {32}{9} b^2 c^2 d^2 x+2 i b^2 c d^2 \text {Li}_2\left (-e^{i \sin ^{-1}(c x)}\right )-2 i b^2 c d^2 \text {Li}_2\left (e^{i \sin ^{-1}(c x)}\right ) \]

[Out]

32/9*b^2*c^2*d^2*x-2/27*b^2*c^4*d^2*x^3-2/9*b*c*d^2*(-c^2*x^2+1)^(3/2)*(a+b*arcsin(c*x))-8/3*c^2*d^2*x*(a+b*ar
csin(c*x))^2-4/3*c^2*d^2*x*(-c^2*x^2+1)*(a+b*arcsin(c*x))^2-d^2*(-c^2*x^2+1)^2*(a+b*arcsin(c*x))^2/x-4*b*c*d^2
*(a+b*arcsin(c*x))*arctanh(I*c*x+(-c^2*x^2+1)^(1/2))+2*I*b^2*c*d^2*polylog(2,-I*c*x-(-c^2*x^2+1)^(1/2))-2*I*b^
2*c*d^2*polylog(2,I*c*x+(-c^2*x^2+1)^(1/2))-10/3*b*c*d^2*(a+b*arcsin(c*x))*(-c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.49, antiderivative size = 249, normalized size of antiderivative = 1.00, number of steps used = 17, number of rules used = 11, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.407, Rules used = {4695, 4649, 4619, 4677, 8, 4699, 4697, 4709, 4183, 2279, 2391} \[ 2 i b^2 c d^2 \text {PolyLog}\left (2,-e^{i \sin ^{-1}(c x)}\right )-2 i b^2 c d^2 \text {PolyLog}\left (2,e^{i \sin ^{-1}(c x)}\right )-\frac {4}{3} c^2 d^2 x \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2-\frac {2}{9} b c d^2 \left (1-c^2 x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )-\frac {10}{3} b c d^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )-\frac {d^2 \left (1-c^2 x^2\right )^2 \left (a+b \sin ^{-1}(c x)\right )^2}{x}-\frac {8}{3} c^2 d^2 x \left (a+b \sin ^{-1}(c x)\right )^2-4 b c d^2 \tanh ^{-1}\left (e^{i \sin ^{-1}(c x)}\right ) \left (a+b \sin ^{-1}(c x)\right )-\frac {2}{27} b^2 c^4 d^2 x^3+\frac {32}{9} b^2 c^2 d^2 x \]

Antiderivative was successfully verified.

[In]

Int[((d - c^2*d*x^2)^2*(a + b*ArcSin[c*x])^2)/x^2,x]

[Out]

(32*b^2*c^2*d^2*x)/9 - (2*b^2*c^4*d^2*x^3)/27 - (10*b*c*d^2*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x]))/3 - (2*b*c*
d^2*(1 - c^2*x^2)^(3/2)*(a + b*ArcSin[c*x]))/9 - (8*c^2*d^2*x*(a + b*ArcSin[c*x])^2)/3 - (4*c^2*d^2*x*(1 - c^2
*x^2)*(a + b*ArcSin[c*x])^2)/3 - (d^2*(1 - c^2*x^2)^2*(a + b*ArcSin[c*x])^2)/x - 4*b*c*d^2*(a + b*ArcSin[c*x])
*ArcTanh[E^(I*ArcSin[c*x])] + (2*I)*b^2*c*d^2*PolyLog[2, -E^(I*ArcSin[c*x])] - (2*I)*b^2*c*d^2*PolyLog[2, E^(I
*ArcSin[c*x])]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4183

Int[csc[(e_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c + d*x)^m*ArcTanh[E^(I*(e + f*
x))])/f, x] + (-Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Log[1 - E^(I*(e + f*x))], x], x] + Dist[(d*m)/f, Int[(c +
d*x)^(m - 1)*Log[1 + E^(I*(e + f*x))], x], x]) /; FreeQ[{c, d, e, f}, x] && IGtQ[m, 0]

Rule 4619

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSin[c*x])^n, x] - Dist[b*c*n, Int[
(x*(a + b*ArcSin[c*x])^(n - 1))/Sqrt[1 - c^2*x^2], x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 4649

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(x*(d + e*x^2)^p*(
a + b*ArcSin[c*x])^n)/(2*p + 1), x] + (Dist[(2*d*p)/(2*p + 1), Int[(d + e*x^2)^(p - 1)*(a + b*ArcSin[c*x])^n,
x], x] - Dist[(b*c*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/((2*p + 1)*(1 - c^2*x^2)^FracPart[p]), Int[x*(1 - c
^2*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && Gt
Q[n, 0] && GtQ[p, 0]

Rule 4677

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)^
(p + 1)*(a + b*ArcSin[c*x])^n)/(2*e*(p + 1)), x] + Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p + 1
)*(1 - c^2*x^2)^FracPart[p]), Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b,
c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rule 4695

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[
((f*x)^(m + 1)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n)/(f*(m + 1)), x] + (-Dist[(2*e*p)/(f^2*(m + 1)), Int[(f*x)^
(m + 2)*(d + e*x^2)^(p - 1)*(a + b*ArcSin[c*x])^n, x], x] - Dist[(b*c*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/
(f*(m + 1)*(1 - c^2*x^2)^FracPart[p]), Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n - 1),
x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1]

Rule 4697

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[((
f*x)^(m + 1)*Sqrt[d + e*x^2]*(a + b*ArcSin[c*x])^n)/(f*(m + 2)), x] + (Dist[Sqrt[d + e*x^2]/((m + 2)*Sqrt[1 -
c^2*x^2]), Int[((f*x)^m*(a + b*ArcSin[c*x])^n)/Sqrt[1 - c^2*x^2], x], x] - Dist[(b*c*n*Sqrt[d + e*x^2])/(f*(m
+ 2)*Sqrt[1 - c^2*x^2]), Int[(f*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, m}
, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] &&  !LtQ[m, -1] && (RationalQ[m] || EqQ[n, 1])

Rule 4699

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[
((f*x)^(m + 1)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n)/(f*(m + 2*p + 1)), x] + (Dist[(2*d*p)/(m + 2*p + 1), Int[(
f*x)^m*(d + e*x^2)^(p - 1)*(a + b*ArcSin[c*x])^n, x], x] - Dist[(b*c*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(
f*(m + 2*p + 1)*(1 - c^2*x^2)^FracPart[p]), Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n -
 1), x], x]) /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[p, 0] &&  !LtQ[m, -1]
 && (RationalQ[m] || EqQ[n, 1])

Rule 4709

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[1/(c^(m
+ 1)*Sqrt[d]), Subst[Int[(a + b*x)^n*Sin[x]^m, x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2
*d + e, 0] && GtQ[d, 0] && IGtQ[n, 0] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {\left (d-c^2 d x^2\right )^2 \left (a+b \sin ^{-1}(c x)\right )^2}{x^2} \, dx &=-\frac {d^2 \left (1-c^2 x^2\right )^2 \left (a+b \sin ^{-1}(c x)\right )^2}{x}-\left (4 c^2 d\right ) \int \left (d-c^2 d x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2 \, dx+\left (2 b c d^2\right ) \int \frac {\left (1-c^2 x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )}{x} \, dx\\ &=\frac {2}{3} b c d^2 \left (1-c^2 x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )-\frac {4}{3} c^2 d^2 x \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2-\frac {d^2 \left (1-c^2 x^2\right )^2 \left (a+b \sin ^{-1}(c x)\right )^2}{x}+\left (2 b c d^2\right ) \int \frac {\sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{x} \, dx-\frac {1}{3} \left (8 c^2 d^2\right ) \int \left (a+b \sin ^{-1}(c x)\right )^2 \, dx-\frac {1}{3} \left (2 b^2 c^2 d^2\right ) \int \left (1-c^2 x^2\right ) \, dx+\frac {1}{3} \left (8 b c^3 d^2\right ) \int x \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \, dx\\ &=-\frac {2}{3} b^2 c^2 d^2 x+\frac {2}{9} b^2 c^4 d^2 x^3+2 b c d^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )-\frac {2}{9} b c d^2 \left (1-c^2 x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )-\frac {8}{3} c^2 d^2 x \left (a+b \sin ^{-1}(c x)\right )^2-\frac {4}{3} c^2 d^2 x \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2-\frac {d^2 \left (1-c^2 x^2\right )^2 \left (a+b \sin ^{-1}(c x)\right )^2}{x}+\left (2 b c d^2\right ) \int \frac {a+b \sin ^{-1}(c x)}{x \sqrt {1-c^2 x^2}} \, dx+\frac {1}{9} \left (8 b^2 c^2 d^2\right ) \int \left (1-c^2 x^2\right ) \, dx-\left (2 b^2 c^2 d^2\right ) \int 1 \, dx+\frac {1}{3} \left (16 b c^3 d^2\right ) \int \frac {x \left (a+b \sin ^{-1}(c x)\right )}{\sqrt {1-c^2 x^2}} \, dx\\ &=-\frac {16}{9} b^2 c^2 d^2 x-\frac {2}{27} b^2 c^4 d^2 x^3-\frac {10}{3} b c d^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )-\frac {2}{9} b c d^2 \left (1-c^2 x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )-\frac {8}{3} c^2 d^2 x \left (a+b \sin ^{-1}(c x)\right )^2-\frac {4}{3} c^2 d^2 x \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2-\frac {d^2 \left (1-c^2 x^2\right )^2 \left (a+b \sin ^{-1}(c x)\right )^2}{x}+\left (2 b c d^2\right ) \operatorname {Subst}\left (\int (a+b x) \csc (x) \, dx,x,\sin ^{-1}(c x)\right )+\frac {1}{3} \left (16 b^2 c^2 d^2\right ) \int 1 \, dx\\ &=\frac {32}{9} b^2 c^2 d^2 x-\frac {2}{27} b^2 c^4 d^2 x^3-\frac {10}{3} b c d^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )-\frac {2}{9} b c d^2 \left (1-c^2 x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )-\frac {8}{3} c^2 d^2 x \left (a+b \sin ^{-1}(c x)\right )^2-\frac {4}{3} c^2 d^2 x \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2-\frac {d^2 \left (1-c^2 x^2\right )^2 \left (a+b \sin ^{-1}(c x)\right )^2}{x}-4 b c d^2 \left (a+b \sin ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{i \sin ^{-1}(c x)}\right )-\left (2 b^2 c d^2\right ) \operatorname {Subst}\left (\int \log \left (1-e^{i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )+\left (2 b^2 c d^2\right ) \operatorname {Subst}\left (\int \log \left (1+e^{i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )\\ &=\frac {32}{9} b^2 c^2 d^2 x-\frac {2}{27} b^2 c^4 d^2 x^3-\frac {10}{3} b c d^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )-\frac {2}{9} b c d^2 \left (1-c^2 x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )-\frac {8}{3} c^2 d^2 x \left (a+b \sin ^{-1}(c x)\right )^2-\frac {4}{3} c^2 d^2 x \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2-\frac {d^2 \left (1-c^2 x^2\right )^2 \left (a+b \sin ^{-1}(c x)\right )^2}{x}-4 b c d^2 \left (a+b \sin ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{i \sin ^{-1}(c x)}\right )+\left (2 i b^2 c d^2\right ) \operatorname {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{i \sin ^{-1}(c x)}\right )-\left (2 i b^2 c d^2\right ) \operatorname {Subst}\left (\int \frac {\log (1+x)}{x} \, dx,x,e^{i \sin ^{-1}(c x)}\right )\\ &=\frac {32}{9} b^2 c^2 d^2 x-\frac {2}{27} b^2 c^4 d^2 x^3-\frac {10}{3} b c d^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )-\frac {2}{9} b c d^2 \left (1-c^2 x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )-\frac {8}{3} c^2 d^2 x \left (a+b \sin ^{-1}(c x)\right )^2-\frac {4}{3} c^2 d^2 x \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2-\frac {d^2 \left (1-c^2 x^2\right )^2 \left (a+b \sin ^{-1}(c x)\right )^2}{x}-4 b c d^2 \left (a+b \sin ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{i \sin ^{-1}(c x)}\right )+2 i b^2 c d^2 \text {Li}_2\left (-e^{i \sin ^{-1}(c x)}\right )-2 i b^2 c d^2 \text {Li}_2\left (e^{i \sin ^{-1}(c x)}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.97, size = 322, normalized size = 1.29 \[ \frac {1}{54} d^2 \left (18 a^2 c^4 x^3-108 a^2 c^2 x-\frac {54 a^2}{x}+36 a b c^4 x^3 \sin ^{-1}(c x)+12 a b c \sqrt {1-c^2 x^2} \left (c^2 x^2+2\right )-216 a b c \left (\sqrt {1-c^2 x^2}+c x \sin ^{-1}(c x)\right )-\frac {108 a b \left (c x \tanh ^{-1}\left (\sqrt {1-c^2 x^2}\right )+\sin ^{-1}(c x)\right )}{x}+2 b^2 c^2 x \left (9 c^2 x^2 \sin ^{-1}(c x)^2-2 \left (c^2 x^2+6\right )\right )-189 b^2 c \sqrt {1-c^2 x^2} \sin ^{-1}(c x)-108 b^2 c^2 x \left (\sin ^{-1}(c x)^2-2\right )+108 i b^2 c \text {Li}_2\left (-e^{i \sin ^{-1}(c x)}\right )-108 i b^2 c \text {Li}_2\left (e^{i \sin ^{-1}(c x)}\right )-\frac {54 b^2 \sin ^{-1}(c x) \left (\sin ^{-1}(c x)+2 c x \left (\log \left (1+e^{i \sin ^{-1}(c x)}\right )-\log \left (1-e^{i \sin ^{-1}(c x)}\right )\right )\right )}{x}-3 b^2 c \sin ^{-1}(c x) \cos \left (3 \sin ^{-1}(c x)\right )\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((d - c^2*d*x^2)^2*(a + b*ArcSin[c*x])^2)/x^2,x]

[Out]

(d^2*((-54*a^2)/x - 108*a^2*c^2*x + 18*a^2*c^4*x^3 + 12*a*b*c*Sqrt[1 - c^2*x^2]*(2 + c^2*x^2) + 36*a*b*c^4*x^3
*ArcSin[c*x] - 189*b^2*c*Sqrt[1 - c^2*x^2]*ArcSin[c*x] - 216*a*b*c*(Sqrt[1 - c^2*x^2] + c*x*ArcSin[c*x]) - 108
*b^2*c^2*x*(-2 + ArcSin[c*x]^2) + 2*b^2*c^2*x*(-2*(6 + c^2*x^2) + 9*c^2*x^2*ArcSin[c*x]^2) - (108*a*b*(ArcSin[
c*x] + c*x*ArcTanh[Sqrt[1 - c^2*x^2]]))/x - 3*b^2*c*ArcSin[c*x]*Cos[3*ArcSin[c*x]] - (54*b^2*ArcSin[c*x]*(ArcS
in[c*x] + 2*c*x*(-Log[1 - E^(I*ArcSin[c*x])] + Log[1 + E^(I*ArcSin[c*x])])))/x + (108*I)*b^2*c*PolyLog[2, -E^(
I*ArcSin[c*x])] - (108*I)*b^2*c*PolyLog[2, E^(I*ArcSin[c*x])]))/54

________________________________________________________________________________________

fricas [F]  time = 2.55, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {a^{2} c^{4} d^{2} x^{4} - 2 \, a^{2} c^{2} d^{2} x^{2} + a^{2} d^{2} + {\left (b^{2} c^{4} d^{2} x^{4} - 2 \, b^{2} c^{2} d^{2} x^{2} + b^{2} d^{2}\right )} \arcsin \left (c x\right )^{2} + 2 \, {\left (a b c^{4} d^{2} x^{4} - 2 \, a b c^{2} d^{2} x^{2} + a b d^{2}\right )} \arcsin \left (c x\right )}{x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^2*(a+b*arcsin(c*x))^2/x^2,x, algorithm="fricas")

[Out]

integral((a^2*c^4*d^2*x^4 - 2*a^2*c^2*d^2*x^2 + a^2*d^2 + (b^2*c^4*d^2*x^4 - 2*b^2*c^2*d^2*x^2 + b^2*d^2)*arcs
in(c*x)^2 + 2*(a*b*c^4*d^2*x^4 - 2*a*b*c^2*d^2*x^2 + a*b*d^2)*arcsin(c*x))/x^2, x)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^2*(a+b*arcsin(c*x))^2/x^2,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.43, size = 411, normalized size = 1.65 \[ \frac {d^{2} a^{2} c^{4} x^{3}}{3}-2 d^{2} a^{2} c^{2} x -\frac {d^{2} a^{2}}{x}-\frac {7 c \,d^{2} b^{2} \arcsin \left (c x \right ) \sqrt {-c^{2} x^{2}+1}}{2}-\frac {7 d^{2} b^{2} \arcsin \left (c x \right )^{2} c^{2} x}{4}+\frac {7 b^{2} c^{2} d^{2} x}{2}-\frac {d^{2} b^{2} \arcsin \left (c x \right )^{2}}{x}-2 c \,d^{2} b^{2} \arcsin \left (c x \right ) \ln \left (1+i c x +\sqrt {-c^{2} x^{2}+1}\right )+2 c \,d^{2} b^{2} \arcsin \left (c x \right ) \ln \left (1-i c x -\sqrt {-c^{2} x^{2}+1}\right )-2 i b^{2} c \,d^{2} \polylog \left (2, i c x +\sqrt {-c^{2} x^{2}+1}\right )+2 i b^{2} c \,d^{2} \polylog \left (2, -i c x -\sqrt {-c^{2} x^{2}+1}\right )-\frac {c \,d^{2} b^{2} \arcsin \left (c x \right ) \cos \left (3 \arcsin \left (c x \right )\right )}{18}-\frac {c \,d^{2} b^{2} \sin \left (3 \arcsin \left (c x \right )\right ) \arcsin \left (c x \right )^{2}}{12}+\frac {c \,d^{2} b^{2} \sin \left (3 \arcsin \left (c x \right )\right )}{54}+\frac {2 d^{2} a b \arcsin \left (c x \right ) c^{4} x^{3}}{3}-4 d^{2} a b \arcsin \left (c x \right ) c^{2} x -\frac {2 d^{2} a b \arcsin \left (c x \right )}{x}+\frac {2 d^{2} a b \,c^{3} x^{2} \sqrt {-c^{2} x^{2}+1}}{9}-\frac {32 c \,d^{2} a b \sqrt {-c^{2} x^{2}+1}}{9}-2 c \,d^{2} a b \arctanh \left (\frac {1}{\sqrt {-c^{2} x^{2}+1}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c^2*d*x^2+d)^2*(a+b*arcsin(c*x))^2/x^2,x)

[Out]

1/3*d^2*a^2*c^4*x^3-2*d^2*a^2*c^2*x-d^2*a^2/x-7/2*c*d^2*b^2*arcsin(c*x)*(-c^2*x^2+1)^(1/2)-7/4*d^2*b^2*arcsin(
c*x)^2*c^2*x+7/2*b^2*c^2*d^2*x-d^2*b^2/x*arcsin(c*x)^2-2*c*d^2*b^2*arcsin(c*x)*ln(1+I*c*x+(-c^2*x^2+1)^(1/2))+
2*c*d^2*b^2*arcsin(c*x)*ln(1-I*c*x-(-c^2*x^2+1)^(1/2))-2*I*b^2*c*d^2*polylog(2,I*c*x+(-c^2*x^2+1)^(1/2))+2*I*b
^2*c*d^2*polylog(2,-I*c*x-(-c^2*x^2+1)^(1/2))-1/18*c*d^2*b^2*arcsin(c*x)*cos(3*arcsin(c*x))-1/12*c*d^2*b^2*sin
(3*arcsin(c*x))*arcsin(c*x)^2+1/54*c*d^2*b^2*sin(3*arcsin(c*x))+2/3*d^2*a*b*arcsin(c*x)*c^4*x^3-4*d^2*a*b*arcs
in(c*x)*c^2*x-2*d^2*a*b*arcsin(c*x)/x+2/9*d^2*a*b*c^3*x^2*(-c^2*x^2+1)^(1/2)-32/9*c*d^2*a*b*(-c^2*x^2+1)^(1/2)
-2*c*d^2*a*b*arctanh(1/(-c^2*x^2+1)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {1}{3} \, a^{2} c^{4} d^{2} x^{3} + \frac {2}{9} \, {\left (3 \, x^{3} \arcsin \left (c x\right ) + c {\left (\frac {\sqrt {-c^{2} x^{2} + 1} x^{2}}{c^{2}} + \frac {2 \, \sqrt {-c^{2} x^{2} + 1}}{c^{4}}\right )}\right )} a b c^{4} d^{2} - 2 \, b^{2} c^{2} d^{2} x \arcsin \left (c x\right )^{2} + 4 \, b^{2} c^{2} d^{2} {\left (x - \frac {\sqrt {-c^{2} x^{2} + 1} \arcsin \left (c x\right )}{c}\right )} - 2 \, a^{2} c^{2} d^{2} x - 4 \, {\left (c x \arcsin \left (c x\right ) + \sqrt {-c^{2} x^{2} + 1}\right )} a b c d^{2} - 2 \, {\left (c \log \left (\frac {2 \, \sqrt {-c^{2} x^{2} + 1}}{{\left | x \right |}} + \frac {2}{{\left | x \right |}}\right ) + \frac {\arcsin \left (c x\right )}{x}\right )} a b d^{2} - \frac {a^{2} d^{2}}{x} + \frac {{\left (b^{2} c^{4} d^{2} x^{4} - 3 \, b^{2} d^{2}\right )} \arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right )^{2} + 2 \, x \int \frac {{\left (b^{2} c^{5} d^{2} x^{4} - 3 \, b^{2} c d^{2}\right )} \sqrt {c x + 1} \sqrt {-c x + 1} \arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right )}{c^{2} x^{3} - x}\,{d x}}{3 \, x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^2*(a+b*arcsin(c*x))^2/x^2,x, algorithm="maxima")

[Out]

1/3*a^2*c^4*d^2*x^3 + 2/9*(3*x^3*arcsin(c*x) + c*(sqrt(-c^2*x^2 + 1)*x^2/c^2 + 2*sqrt(-c^2*x^2 + 1)/c^4))*a*b*
c^4*d^2 - 2*b^2*c^2*d^2*x*arcsin(c*x)^2 + 4*b^2*c^2*d^2*(x - sqrt(-c^2*x^2 + 1)*arcsin(c*x)/c) - 2*a^2*c^2*d^2
*x - 4*(c*x*arcsin(c*x) + sqrt(-c^2*x^2 + 1))*a*b*c*d^2 - 2*(c*log(2*sqrt(-c^2*x^2 + 1)/abs(x) + 2/abs(x)) + a
rcsin(c*x)/x)*a*b*d^2 - a^2*d^2/x + 1/3*((b^2*c^4*d^2*x^4 - 3*b^2*d^2)*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x +
1))^2 + 3*x*integrate(2/3*(b^2*c^5*d^2*x^4 - 3*b^2*c*d^2)*sqrt(c*x + 1)*sqrt(-c*x + 1)*arctan2(c*x, sqrt(c*x +
 1)*sqrt(-c*x + 1))/(c^2*x^3 - x), x))/x

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2\,{\left (d-c^2\,d\,x^2\right )}^2}{x^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*asin(c*x))^2*(d - c^2*d*x^2)^2)/x^2,x)

[Out]

int(((a + b*asin(c*x))^2*(d - c^2*d*x^2)^2)/x^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ d^{2} \left (\int \left (- 2 a^{2} c^{2}\right )\, dx + \int \frac {a^{2}}{x^{2}}\, dx + \int a^{2} c^{4} x^{2}\, dx + \int \left (- 2 b^{2} c^{2} \operatorname {asin}^{2}{\left (c x \right )}\right )\, dx + \int \frac {b^{2} \operatorname {asin}^{2}{\left (c x \right )}}{x^{2}}\, dx + \int \left (- 4 a b c^{2} \operatorname {asin}{\left (c x \right )}\right )\, dx + \int \frac {2 a b \operatorname {asin}{\left (c x \right )}}{x^{2}}\, dx + \int b^{2} c^{4} x^{2} \operatorname {asin}^{2}{\left (c x \right )}\, dx + \int 2 a b c^{4} x^{2} \operatorname {asin}{\left (c x \right )}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c**2*d*x**2+d)**2*(a+b*asin(c*x))**2/x**2,x)

[Out]

d**2*(Integral(-2*a**2*c**2, x) + Integral(a**2/x**2, x) + Integral(a**2*c**4*x**2, x) + Integral(-2*b**2*c**2
*asin(c*x)**2, x) + Integral(b**2*asin(c*x)**2/x**2, x) + Integral(-4*a*b*c**2*asin(c*x), x) + Integral(2*a*b*
asin(c*x)/x**2, x) + Integral(b**2*c**4*x**2*asin(c*x)**2, x) + Integral(2*a*b*c**4*x**2*asin(c*x), x))

________________________________________________________________________________________